Union-closed families of sets

نویسندگان

  • Igor Balla
  • Béla Bollobás
  • Tom Eccles
چکیده

A family of sets is union-closed if it contains the union of any two of its elements. Some years ago, Reimer gave a lower bound for the average size of an element of a union-closed family consisting of m sets and, two years ago, Czédli did the same under the additional condition that our sets are contained in a set with n elements. Recently Tom Eccles and I have determined the minimum average size precisely, and so proved a conjecture of Czédli, Maróti and Schmidt. In the talk I shall prove this result, and shall present some of its consequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on the Union-Closed Sets Conjecture

The union-closed sets conjecture states that if a finite family of sets A 6 = {∅} is union-closed, then there is an element which belongs to at least half the sets in A. In 2001, D. Reimer showed that the average set size of a union-closed family, A, is at least 1 2 log2 |A|. In order to do so, he showed that all union-closed families satisfy a particular condition, which in turn implies the pr...

متن کامل

Decomposition of supra soft locally closed sets and supra SLC-continuity

In this paper, we introduce two different notions of generalized supra soft sets namely supra A--soft sets and supra soft locally closed sets in supra soft topological spaces, which are weak forms of supra open soft sets and discuss their relationships with each other and other supra open soft sets [{it International Journal of Mathematical Trends and Technology} (IJMTT), (2014) Vol. 9 (1):37--...

متن کامل

On averaging Frankl's conjecture for large union-closed-sets

Let F be a union-closed family of subsets of an m-element set A. Let n = |F| ≥ 2 and for a ∈ A let s(a) denote the number of sets in F that contain a. Frankl’s conjecture from 1979, also known as the union-closed sets conjecture, states that there exists an element a ∈ A with n − 2s(a) ≤ 0. Strengthening a result of Gao and Yu [7] we verify the conjecture for the particular case when m ≥ 3 and ...

متن کامل

Two Results on Union-Closed Families

We show that there is some absolute constant c > 0, such that for any union-closed family F ⊆ 2, if |F| ≥ ( 1 2 − c)2n, then there is some element i ∈ [n] that appears in at least half of the sets of F . We also show that for any union-closed family F ⊆ 2, the number of sets which are not in F that cover a set in F is at most 2, and provide examples where the inequality is tight.

متن کامل

New Conjectures for Union-Closed Families

The Frankl conjecture, also known as the union-closed sets conjecture, states that in any finite non-empty union-closed family, there exists an element in at least half of the sets. From an optimization point of view, one could instead prove that 2a is an upper bound to the number of sets in a union-closed family on a ground set of n elements where each element is in at most a sets for all a, n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2013